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− Cellular networks

− Ad-hoc wireless networks

− Wireline: DSL
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Enc 1 Dec 1

Enc 2 Dec 2Interference
Channel

Enc K Dec K

− Capacity region not known in general, even for two user pairs

− Best known scheme for two user pairs: (Han–Kobayashi 81)

− How to extend the Han–Kobayashi scheme to more user pairs?
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Deterministic interference channels

General interference channels contain two adverse effects

− Channel noise

− Interference

I Deterministic interference channels

− No noise in the channel

− Focus on signal interaction

− Motivated by

Growing user density in current wireless networks
High-SNR regime of Gaussian channels (Bresler–Tse 08)
Study adverse effects separately
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Injectivity: hk and fk are one-to-one in each argument

For f1: H(X11) = H(Y1 |S1) and H(S1) = H(Y1 |X11)
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Define (2nR1 , 2nR2 , 2nR3 , n) code, probability of error,

achievability of (R1,R2,R3), and the capacity region in the usual way
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Why this deterministic model?

− 2-pair deterministic interference channel
(El Gamal–Costa 82)

− Fully invertible 3-DIC (Gou–Jafar 09)

Capacity region is not known in general

We find a new achievable rate region

− Includes previously known bounds

− Naturally extends Han–Kobayashi
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Coding strategies:

Treat interference as noise

Decode both messages

Hybrid: partly decode, partly treat as noise (Han–Kobayashi 81)

Rate splitting and superposition coding
Achieves entire capacity region
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K ≥ 3 user pairs
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Much less is known

Receivers are impaired by the joint effect of interferers

Partially decoding interfering messages is not appropriate

Interference alignment
(Maddah-Ali et al. 08, Cadambe–Jafar 08)

Constrain combined interference to a subspace
Disregard that subspace
Treat interference as noise

We are interested in more general coding schemes
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Interference
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Multiple Access Channel

But: receiver is interested in only one message
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Enc 1 Dec 1

Enc 2 Dec 2

Enc 3 Dec 3

Broadcast channel

But: transmitter has a message for only one receiver
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Talk outline

Receiver-centric (MAC) aspect

− Interference decoding

Transmitter-centric (BC) aspect

− Communication with disturbance constraints

Combine the two aspects

− Capacity inner bound for 3-DIC

Extension to noisy channels

B. Bandemer (UCSD) 3-pair interference channels 10 / 43
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Enc 1 Dec 1

Enc 2 Dec 2

Enc 3 Dec 3

Use simple point-to-point codes at the transmitters

Interference decoding
Receivers decode own message jointly with combined interference
Simultaneous non-unique decoding
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(B./El Gamal, ISIT 2010)

Theorem

RID =
⋃
p

R1(p) ∩R2(p) ∩R3(p),

where (Q,X1,X2,X3) ∼ p = p(q)p(x1|q)p(x2|q)p(x3|q),
is an inner bound to the capacity region of the 3-DIC.
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RID =
⋃
p

R1(p) ∩R2(p) ∩R3(p),

where (Q,X1,X2,X3) ∼ p = p(q)p(x1|q)p(x2|q)p(x3|q),
is an inner bound to the capacity region of the 3-DIC.

R1(p) is the set of (R1,R2,R3) that satisfy

R1 < H(X11 |Q),

R1 + min{R2,H(X21 |Q)} < H(Y1 |X31,Q),

R1 + min{R3,H(X31 |Q)} < H(Y1 |X21,Q),

R1 + min{R2 + R3,H(S1 |Q),R2 + H(X31 |Q),

H(X21 |Q) + R3} < H(Y1 |Q)
Likewise, R2 and R3
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− Interference alignment
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− Sum capacity of 3-user Q-ary extension channel (B. et al. ISIT 2009)
− Strong interference, invertible hk



Introduction Interference decoding Disturbance constraints Achievable rate region Channels with noise Conclusion

Interference-decoding inner bound

B. Bandemer (UCSD) 3-pair interference channels 12 / 43

(B./El Gamal, ISIT 2010)

Theorem

RID =
⋃
p

R1(p) ∩R2(p) ∩R3(p),

where (Q,X1,X2,X3) ∼ p = p(q)p(x1|q)p(x2|q)p(x3|q),
is an inner bound to the capacity region of the 3-DIC.

Remarks:

Generally larger than interference-as-noise inner bound

− Interference alignment

Achieves capacity in some cases

− Sum capacity of 3-user Q-ary extension channel (B. et al. ISIT 2009)
− Strong interference, invertible hk



Introduction Interference decoding Disturbance constraints Achievable rate region Channels with noise Conclusion

General shape of R1

B. Bandemer (UCSD) 3-pair interference channels 13 / 43

R1 :
R1 is unbounded in R2 and R3

− R1 > 0 regardless of R2, R3

As R2, R3 decrease, S1
becomes more structured

− Helps increase R1

R1 < H(X11 |Q),

R1 + min{R2,H(X21 |Q)} < H(Y1 |X31,Q),

R1 + min{R3,H(X31 |Q)} < H(Y1 |X21,Q),

R1 + min{R2 + R3,H(S1 |Q),R2 + H(X31 |Q),

H(X21 |Q) + R3} < H(Y1 |Q)
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Proof of achievability

Codebook generation
Fix p(x1)p(x2)p(x3)
Generate xn1 (m1) ∼

∏n
i=1 pX1(x1i ), for m1 ∈ [1 : 2nR1 ]

Repeat likewise for other users

(This induces xn12(m1), sn1 (m2,m3), yn2 (m1,m2,m3), etc.)

Encoding
To send m1, transmit xn1 (m1). Likewise for other users

Decoding: Simultaneous non-unique decoding
Observe yn1 . Find unique m̂1 such that

(xn1 (m̂1), sn1 (m2,m3), xn21(m2), xn31(m3), yn1 ) ∈ T (n)
ε

for some m2,m3

Likewise for other users

B. Bandemer (UCSD) 3-pair interference channels 15 / 43
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Optimality

Interference decoding inner bound not optimal in general

I But:
For fixed codebook structure, the decoder structure is optimal

Receiver-centric aspect is solved

− Simultaneous non-unique decoding makes optimal use
of codebook knowledge

In fact, this holds for general K -pair discrete memoryless ICs
(B./Kim/El Gamal, manuscript in preparation)
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Example: Achievable rate regions
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Interference as noise Interference decoding



Introduction Interference decoding Disturbance constraints Achievable rate region Channels with noise Conclusion

Summary – Receiver-centric aspect
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Interference decoding

Improves upon treating
interference as noise

Given the codebook structure,
simultaneous non-unique
decoding is optimal

Fully exploits structure of
combined interference signal
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Transmitter-centric aspect
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Enc 1 Dec 1

Enc 2 Dec 2

Enc 3 Dec 3

Broadcast channel

But: transmitter has a message for only one receiver
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Enc 1 Dec 1

Enc 2 Dec 2

Enc 3 Dec 3

We define disturbance-constrained communication
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Disturbance-constrained communication
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(B./El Gamal, ISIT 2011)

Enc Dec
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(B./El Gamal, ISIT 2011)

Enc Dec

Rate–disturbance trade-off

Pair (R,Rd) is achievable:
Sequence of (2nR , n) codes exists with

lim
n→∞

P(M̂ 6= M) = 0 lim sup
n→∞

1

n
H(Zn) ≤ Rd

Rate–disturbance region R
Closure of all achievable rate–disturbance pairs
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(B./El Gamal, ISIT 2011)
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Result: Rate–disturbance region

B. Bandemer (UCSD) 3-pair interference channels 22 / 43

Enc Dec

Theorem

The rate–disturbance region R is the
set of pairs (R,Rd) ∈ R2

+ satisfying

R ≤ H(Y )

R − Rd ≤ H(Y |Z )

for some distribution p(x)
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Enc Dec

Theorem

The rate–disturbance region R is the
set of pairs (R,Rd) ∈ R2

+ satisfying

R ≤ H(Y )

R − Rd ≤ H(Y |Z )

for some distribution p(x)

(This theorem extends to noisy channels.)
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Achievability proof sketch

Rate splitting: R = R0 + R1

Superposition coding:

Fix p(x). This induces p(z)p(x |z)
Generate 2nR0 cloud centers ∼ p(z)
Generate 2nR1 satellite codewords ∼ p(x |z)

Analysis:
Side receiver distinguishes cloud centers, but not satellite codewords

B. Bandemer (UCSD) 3-pair interference channels 24 / 43
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Connection to interference channel
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Injective deterministic interference channel (El Gamal–Costa 1982)

Optimal scheme: Han–Kobayashi with U1 = Z1, U2 = Z2

− is rate-splitting and superposition coding

− coincides with disturbance-minimizing scheme
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Extension to two disturbance constraints
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One disturbance constraint
Optimal scheme

↔ 2-pair interference channel
Han–Kobayashi scheme
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One disturbance constraint
Optimal scheme

↔ 2-pair interference channel
Han–Kobayashi scheme

Two disturbance constraints → 3-pair interference channel
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Two disturbance constraints

B. Bandemer (UCSD) 3-pair interference channels 27 / 43

Enc Dec
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Coding scheme
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Summary – Two disturbance constraints
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I Use Marton coding and superposition coding

Superposition

Layered codebook
Superposition

Observed structure:Transmitted:
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Summary – Transmitter-centric aspect

B. Bandemer (UCSD) 3-pair interference channels 30 / 43

Disturbance-constrained
communication

Link to interference channels
(single constraint case recovers
Han-Kobayashi)

Two constraints:
Layered coding scheme
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BC aspect MAC aspect

Marton coding and
superposition coding

+ Interference decoding
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Codebooks as in disturbance-constrained communication
Fixed distributions p(uk , xk) for all users k

Receivers use interference decoding
Use full knowledge of interfering codebooks
Non-unique simultaneous decoding
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3-DIC capacity region inner bound
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Theorem

R = FM

{⋃
p

R1(p) ∩R2(p) ∩R3(p)

}
,

where p is of the form p = p(q)p(u1, x1|q)p(u2, x2|q)p(u3, x3|q),
is an inner bound to the capacity region of the 3-DIC.

Where

FM is a specialized Fourier–Motzkin elimination

R1, R2, and R3 are rate regions in R18

Details are quite involved . . .
But easy to evaluate by computer
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Example: Rate regions

B. Bandemer (UCSD) 3-pair interference channels 37 / 43

Layered Scheme & Intf. Dec.

Interference decoding

Interference as noise
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Summary – Achievable rate region for 3-DIC

B. Bandemer (UCSD) 3-pair interference channels 38 / 43

New inner bound to the capacity region

− Non-symbolic Fourier–Motzkin elimination
− Numerous modes of saturation
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Extension to channels with noise

B. Bandemer (UCSD) 3-pair interference channels 39 / 43

(to be presented at ISIT 2012)

M1 → X1

M2 → X2

M3 → X3

Y1 → M̂1

Y2 → M̂2

Y3 → M̂3
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(to be presented at ISIT 2012)

X11

X21

X31

Y1

S ′
1

S1

f1

h1

M1 → X1

M2 → X2

M3 → X3

Y2

Y3 → M̂3

Y1

Combined interference Sk passes through a noisy channel Sk → S ′
k

− Arbitrary DMC p(s ′k |sk)

hk and fk remain injective in each argument
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Extension to channels with noise
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(to be presented at ISIT 2012)

X11

X21

X31

Y1

S ′
1

S1

f1

h1

M1 → X1

M2 → X2

M3 → X3

Y2

Y3 → M̂3

Y1

This channel: Has structure similar to 3-DIC

Contains the Gaussian IC as a special case
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Inner bound for channels with noise
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Summary – Channels with noise
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X11

X21

X31

Y1

S ′
1

S1

f1

h1

M1 → X1

M2 → X2

M3 → X3

Y2

Y3 → M̂3

Y1

Inner bound techniques continue to work

Achievable regimes subsumes Han–Kobayashi scheme
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Conclusion

I Receiver-centric aspect

− Interference decoding: Exploit structure of combined interference

− Simultaneous non-unique decoding is optimal

− Subsumes treating interference as noise

I Transmitter-centric aspect

− Introduced communication with disturbance constraints

− Found rate–disturbance region for single constraint

− Connection to interference channels

− Inner bound for deterministic case with two constraints

I Combination of the two aspects

− New capacity inner bound for 3-DIC: improves previous bounds

− Transmission scheme extends to noisy channels

B. Bandemer (UCSD) 3-pair interference channels 42 / 43
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Thanks!



Inner bound on the rate–disturbance region
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Theorem

The set of (R,Rd,1,Rd,2) ∈ R3
+ satisfying

R ≤ H(Y )

Rd,1 + Rd,2 ≥ I (Z1;Z2 |U)

R − Rd,1 ≤ H(Y |Z1,U)

R − Rd,2 ≤ H(Y |Z2,U)

R − Rd,1 − Rd,2 ≤ H(Y |Z1,Z2,U)

− I (Z1;Z2 |U)

2R − Rd,1 − Rd,2 ≤ H(Y |Z1,Z2,U) + H(Y |U)

− I (Z1;Z2 |U)

for some joint distribution p(u, x), is an inner
bound to the rate–disturbance region

(This is optimal in some cases, e.g., if Y = X )



Coding scheme

B. Bandemer (UCSD) 3-pair interference channels 45 / 43

Split rate R = R0 + R1 + R2 + R3

Let R̃1 ≥ R1 and R̃2 ≥ R2

Decoding conditions:

R3 < H(Y |Z1,Z2,U)

R̃1 + R3 < H(Y |Z2,U) + I (Z1;Z2 |U)

R̃2 + R3 < H(Y |Z1,U) + I (Z1;Z2 |U)

R̃1 + R̃2 + R3 < H(Y |U) + I (Z1;Z2 |U)

R0 + R̃1 + R̃2 + R3 < H(Y ) + I (Z1;Z2 |U)

(plus some encoding conditions)
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Conditions: Encoder conditions, and

r1 + min{r21 + r31,H(S1 | c21, c31)} < H(Y1 | c1, c21, c31) + t1
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Conditions: Encoder conditions, and
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From disturbance-constrained communication
r1 c1 t1

R11 U1, X12, X13 0

R̃12 + R11 U1, X13 I (X12;X13 |U1)

R̃13 + R11 U1, X12 I (X12;X13 |U1)

R̃12 + R̃13 + R11 U1 I (X12;X13 |U1)

R10 + R̃12 + R̃13 + R11 ∅ I (X12;X13 |U1)
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Condition (example):

R̃13 + R11 + min
{
R20 + R̃21 + R̃31,

R20 + R̃21 + H(X31 |U3,Q),

R20 + R̃31 + H(X21 |U2,Q),

R20 + H(X21 |U2,Q) + H(X31 |U3,Q),

R̃31 + H(X21 |Q),

H(S1 |U3,Q)
}
≤ H(Y1 |U1,X12,U3,Q)

+ I (X12;X13 |U1,Q)

45 conditions of this type, plus 5 encoder conditions

I Not hard to evaluate by computer
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Example conditions for R1 (first receiver)
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R̃13 + R11 + min
{
R20 + R̃21 + R̃31,

R20 + R̃21 + I (S1;S ′
1 |X2,U3,Q),

R20 + R̃31 + I (S1;S ′
1 |U2,X3,Q),

R20 + I (S1;S ′
1 |U2,U3,Q),

R̃31 + I (S1;S ′
1 |X3,Q),

I (S1;S ′
1 |U3,Q)

}
≤ I (X1,X2,X3;Y1 |U1,X12,U3,Q)

+ I (X12;X13 |U1,Q)

Saturation interpretation still holds

Conditional noisy channel capacities replace typical set size



Example conditions for R1 (first receiver)

B. Bandemer (UCSD) 3-pair interference channels 48 / 43

R̃13 + R11 + min
{
R20 + R̃21 + R̃31,

R20 + R̃21 + H(X31 |U3,Q),

R20 + R̃31 + H(X21 |U2,Q),

R20 + H(X21 |U2,Q) + H(X31 |U3,Q),

R̃31 + H(X21 |Q),

H(S1 |U3,Q)
}
≤ H(Y1 |U1,X12,U3,Q)

+ I (X12;X13 |U1,Q)

Saturation interpretation still holds

Conditional noisy channel capacities replace typical set size
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