New Results on Interference Channels with Three User Pairs

Bernd Bandemer

University of California, San Diego Information Theory and Applications Center

ITCSC-INC Joint Seminar, The Chinese University of Hong Kong June 6th, 2012

isturbance constraints 0000000000 Achievable rate regior 00000000 annels with noise

Conclusion

isturbance constraints 0000000000 Achievable rate regio 00000000 Channels with noi

Conclusion 00

isturbance constraints 0000000000 Achievable rate regior 00000000 annels with noise

Conclusion

isturbance constraints 0000000000 Achievable rate regio

Channels with noise

Conclusion

isturbance constraints 0000000000 Achievable rate regio

Channels with noise

Achievable rate regioi 00000000

Introduction	Disturbance constraints	Channels with noise	
00000000			

Introduction			
00000000			

Capacity region not known in general, even for two user pairs

Introduction			
00000000			

Capacity region not known in general, even for two user pairs

- Best known scheme for two user pairs: (Han-Kobayashi 81)

Introduction			
00000000			

- Capacity region not known in general, even for two user pairs
- Best known scheme for two user pairs: (Han-Kobayashi 81)
- How to extend the Han-Kobayashi scheme to more user pairs?

Deterministic interference channels

General interference channels contain two adverse effects

- Channel noise
- Interference

Deterministic interference channels

- General interference channels contain two adverse effects
 - Channel noise
 - Interference

Deterministic interference channels

- No noise in the channel
- Focus on signal interaction

Deterministic interference channels

General interference channels contain two adverse effects

- Channel noise
- Interference

► Deterministic interference channels

- No noise in the channel
- Focus on signal interaction
- Motivated by
 - Growing user density in current wireless networks
 - High-SNR regime of Gaussian channels (*Bresler-Tse 08*)
 - Study adverse effects separately

Achievable rate regior 00000000 hannels with noise

Conclusion

Achievable rate regio 00000000 Channels with noise

Conclusion

Achievable rate regio 00000000 Channels with noise

Conclusion

Deterministic interference channel (3-DIC)

Injectivity: h_k and f_k are one-to-one in each argument For f_1 : $H(X_{11}) = H(Y_1 | S_1)$ and $H(S_1) = H(Y_1 | X_{11})$

Achievable rate regior ၁୦୦୦୦୦୦୦ Channels with noise

Conclusion 00

Deterministic interference channel (3-DIC)

Define $(2^{nR_1}, 2^{nR_2}, 2^{nR_3}, n)$ code, probability of error, achievability of (R_1, R_2, R_3) , and the capacity region in the usual way

sturbance constraints 0000000000 Achievable rate regior 00000000 Channels with nois

Conclusion

erference decoding 0000000 sturbance constraint

Achievable rate regio 0000000

- Why this deterministic model?
 - 2-pair deterministic interference channel (El Gamal–Costa 82)
 - Fully invertible 3-DIC (Gou-Jafar 09)

erference decoding 0000000 sturbance constraint

Achievable rate regio 0000000 hannels with noise

Conclusion

- Why this deterministic model?
 - 2-pair deterministic interference channel (El Gamal–Costa 82)
 - Fully invertible 3-DIC (Gou-Jafar 09)
- Capacity region is not known in general

erference decoding 0000000 sturbance constraint

Achievable rate regio 00000000

- Why this deterministic model?
 - 2-pair deterministic interference channel (El Gamal–Costa 82)
 - Fully invertible 3-DIC (Gou-Jafar 09)
- Capacity region is not known in general

- We find a new achievable rate region
 - Includes previously known bounds
 - Naturally extends Han-Kobayashi

Two user pairs (El Gamal–Costa 82)

Two user pairs (El Gamal–Costa 82)

Coding strategies:

Treat interference as noise

Two user pairs (El Gamal-Costa 82)

Coding strategies:

- Treat interference as noise
- Decode both messages

Two user pairs (El Gamal–Costa 82)

Coding strategies:

- Treat interference as noise
- Decode both messages
- Hybrid: partly decode, partly treat as noise (Han-Kobayashi 81)
 - Rate splitting and superposition coding
 - Achieves entire capacity region

$K \ge 3$ user pairs

Much less is known

$K \ge 3$ user pairs

Much less is known

- Receivers are impaired by the **joint effect** of interferers
 - Partially decoding interfering messages is not appropriate

$K \geq 3$ user pairs

Much less is known

- Receivers are impaired by the joint effect of interferers
 - Partially decoding interfering messages is not appropriate

Interference alignment (Maddah-Ali et al. 08, Cadambe–Jafar 08)

- Constrain combined interference to a subspace
- Disregard that subspace
- Treat interference as noise

$K \geq 3$ user pairs

Much less is known

- Receivers are impaired by the joint effect of interferers
 - Partially decoding interfering messages is not appropriate

Interference alignment (Maddah-Ali et al. 08, Cadambe–Jafar 08)

- Constrain combined interference to a subspace
- Disregard that subspace
- Treat interference as noise
- We are interested in more general coding schemes

Achievable rate regio 0000000 Channels with nois

Conclusion 00

Two aspects of interference channels

Achievable rate regio 00000000 Channels with noise

Conclusior

Two aspects of interference channels

Multiple Access Channel

But: receiver is interested in only one message

Achievable rate regio 0000000 Channels with 000 Conclusio 00

Two aspects of interference channels

Broadcast channel

But: transmitter has a message for only one receiver

Talk outline

- Receiver-centric (MAC) aspect
 - Interference decoding
- Transmitter-centric (BC) aspect
 - Communication with disturbance constraints
- Combine the two aspects
 - Capacity inner bound for 3-DIC
- Extension to noisy channels

Conclusion

Receiver-centric aspect

Multiple Access Channel

But: receiver is interested in only one message

Receiver-centric aspect

Use simple point-to-point codes at the transmitters

Interference decoding

Receivers decode own message jointly with combined interference Simultaneous non-unique decoding
Theorem

$$\mathscr{R}_{\mathrm{ID}} = \bigcup_{p} \ \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p),$$

where $(Q, X_1, X_2, X_3) \sim p = p(q)p(x_1|q)p(x_2|q)p(x_3|q)$, is an inner bound to the capacity region of the 3-DIC.

Theorem $\mathscr{R}_{\mathrm{ID}} = \overline{\bigcup_{p}} \ \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p),$ where $(Q, X_{1}, X_{2}, X_{3}) \sim p = p(q)p(x_{1}|q)p(x_{2}|q)p(x_{3}|q),$ is an inner bound to the capacity region of the 3-DIC.

• $\mathscr{R}_1(p)$ is the set of (R_1, R_2, R_3) that satisfy

 $R_{1} < H(X_{11} | Q),$ $R_{1} + \min\{R_{2}, H(X_{21} | Q)\} < H(Y_{1} | X_{31}, Q),$ $R_{1} + \min\{R_{3}, H(X_{31} | Q)\} < H(Y_{1} | X_{21}, Q),$ $R_{1} + \min\{R_{2} + R_{3}, H(S_{1} | Q), R_{2} + H(X_{31} | Q),$ $H(X_{21} | Q) + R_{3}\} < H(Y_{1} | Q)$ $\blacksquare \text{ Likewise, } \mathscr{R}_{2} \text{ and } \mathscr{R}_{3}$

Theorem

$$\mathscr{R}_{\mathrm{ID}} = \overline{\bigcup_{p}} \ \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p),$$
where $(Q, X_{1}, X_{2}, X_{3}) \sim p = p(q)p(x_{1}|q)p(x_{2}|q)p(x_{3}|q),$
is an inner bound to the capacity region of the 3-DIC.

Remarks:

- Generally larger than interference-as-noise inner bound
 - Interference alignment

Theorem $\mathscr{R}_{\mathrm{ID}} = \overline{\bigcup_{p}} \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p),$ where $(Q, X_{1}, X_{2}, X_{3}) \sim p = p(q)p(x_{1}|q)p(x_{2}|q)p(x_{3}|q),$ is an inner bound to the capacity region of the 3-DIC.

Remarks:

- Generally larger than interference-as-noise inner bound
 - Interference alignment
- Achieves capacity in some cases
 - Sum capacity of 3-user Q-ary extension channel (B. et al. ISIT 2009)
 - Strong interference, invertible h_k

sturbance constraint 000000000 Achievable rate re 00000000

General shape of \mathscr{R}_1

Interference decoding	Disturbance constraints	Channels with noise	
00000000			

Saturation effect

$$\begin{split} R_1 &< H(X_{11} \mid Q), \\ R_1 &+ \min\{R_2, H(X_{21} \mid Q)\} < H(Y_1 \mid X_{31}, Q), \\ R_1 &+ \min\{R_3, H(X_{31} \mid Q)\} < H(Y_1 \mid X_{21}, Q), \\ R_1 &+ \min\{R_2 + R_3, H(S_1 \mid Q), R_2 + H(X_{31} \mid Q), \\ H(X_{21} \mid Q) + R_3\} < H(Y_1 \mid Q) \end{split}$$

 Introduction
 Interference decoding
 Disturbance constraints
 Achievable rate region
 Channels with noise
 Conclusion

 000000000
 0000000000
 000000000
 000000000
 000
 000

Proof of achievability

Codebook generation

Fix $p(x_1)p(x_2)p(x_3)$ Generate $x_1^n(m_1) \sim \prod_{i=1}^n p_{X_1}(x_{1i})$, for $m_1 \in [1:2^{nR_1}]$ Repeat likewise for other users Introduction Interference decoding Disturbance constraints Achievable rate region Channels with noise Conclusion

Proof of achievability

Codebook generation

Fix $p(x_1)p(x_2)p(x_3)$ Generate $x_1^n(m_1) \sim \prod_{i=1}^n p_{X_1}(x_{1i})$, for $m_1 \in [1:2^{nR_1}]$ Repeat likewise for other users

(This induces $x_{12}^n(m_1)$, $s_1^n(m_2, m_3)$, $y_2^n(m_1, m_2, m_3)$, etc.)

 Introduction
 Interference decoding
 Disturbance constraints
 Achievable rate region
 Channels with noise
 Conclusion

 000000000
 000000000
 000000000
 00000000
 000
 000

Proof of achievability

Codebook generation

Fix $p(x_1)p(x_2)p(x_3)$ Generate $x_1^n(m_1) \sim \prod_{i=1}^n p_{X_1}(x_{1i})$, for $m_1 \in [1:2^{nR_1}]$ Repeat likewise for other users

(This induces $x_{12}^n(m_1)$, $s_1^n(m_2, m_3)$, $y_2^n(m_1, m_2, m_3)$, etc.)

Encoding

To send m_1 , transmit $x_1^n(m_1)$. Likewise for other users

 Introduction
 Interference decoding
 Disturbance constraints
 Achievable rate region
 Channels with noise
 Conclusion

 000000000
 000000000
 000000000
 00000000
 000
 000
 000

Proof of achievability

Codebook generation

Fix $p(x_1)p(x_2)p(x_3)$ Generate $x_1^n(m_1) \sim \prod_{i=1}^n p_{X_1}(x_{1i})$, for $m_1 \in [1:2^{nR_1}]$ Repeat likewise for other users

(This induces $x_{12}^n(m_1)$, $s_1^n(m_2, m_3)$, $y_2^n(m_1, m_2, m_3)$, etc.)

Encoding

To send m_1 , transmit $x_1^n(m_1)$. Likewise for other users

 Decoding: Simultaneous non-unique decoding Observe y₁ⁿ. Find unique m̂₁ such that

$$(x_1^n(\hat{m}_1), s_1^n(m_2, m_3), x_{21}^n(m_2), x_{31}^n(m_3), y_1^n) \in \mathcal{T}_{\varepsilon}^{(n)}$$

for some m_2, m_3 Likewise for other users

Interference decoding inner bound not optimal in general

Interference decoding inner bound not optimal in general

► But:

- Interference decoding inner bound not optimal in general
 - ► But:

Interference decoding inner bound not optimal in general

► But:

Interference decoding inner bound not optimal in general

► But:

Interference decoding inner bound not optimal in general

► But:

- Receiver-centric aspect is solved
 - Simultaneous non-unique decoding makes optimal use of codebook knowledge

Interference decoding inner bound not optimal in general

► But:

- Receiver-centric aspect is solved
 - Simultaneous non-unique decoding makes optimal use of codebook knowledge
- In fact, this holds for general K-pair discrete memoryless ICs (B./Kim/El Gamal, manuscript in preparation)

Interference decoding

isturbance constraint 0000000000 Achievable rate region

nannels with noise

Conclusion

Example

Interference decoding

isturbance constraint: 0000000000 Achievable rate regio 00000000

on Channels v 000 Conclusi 00

Example: Achievable rate regions

Interference as noise

Interference decoding

Disturbance constrain

Achievable rate regi 00000000 Channels with n

Conclusion

Summary – Receiver-centric aspect

Interference decoding

- Improves upon treating interference as noise
- Given the codebook structure, simultaneous non-unique decoding is optimal
- Fully exploits structure of combined interference signal

Achievable rate reg

Channels with noi 000 Conclusion 00

Transmitter-centric aspect

Broadcast channel

But: transmitter has a message for only one receiver

Transmitter-centric aspect

We define disturbance-constrained communication

Disturbance-constrained communication (B./El Gamal, ISIT 2011)

Disturbance-constrained communication (B./El Gamal, ISIT 2011)

Rate-disturbance trade-off

Pair (R, R_d) is achievable:
 Sequence of (2^{nR}, n) codes exists with

$$\lim_{n\to\infty} \mathsf{P}(\hat{M}\neq M) = 0 \qquad \qquad \limsup_{n\to\infty} \frac{1}{n} H(Z^n) \le R_d$$

Disturbance-constrained communication (B./El Gamal, ISIT 2011)

Rate-disturbance trade-off

Pair (R, R_d) is achievable:
 Sequence of (2^{nR}, n) codes exists with

$$\lim_{n\to\infty} \mathsf{P}(\hat{M}\neq M) = 0 \qquad \qquad \limsup_{n\to\infty} \frac{1}{n} H(Z^n) \le R_d$$

■ Rate-disturbance region *ℜ*

Closure of all achievable rate-disturbance pairs

Achievable rate regi

n Channels with 000 Conclusion

Result: Rate-disturbance region

Theorem

The rate-disturbance region \mathscr{R} is the set of pairs $(R, R_d) \in \mathbb{R}^2_+$ satisfying

 $R \le H(Y)$ $R - R_d \le H(Y \mid Z)$

for some distribution p(x)

Achievable rate regi 00000000 Channels with noise

Conclusion

Result: Rate-disturbance region

Achievable rate regi

gion Channels w 000

Result: Rate-disturbance region

(This theorem extends to noisy channels.)

	Disturbance constraints		

Example

	Disturbance constraints		

Example

Achievable rate re

ion Channels v 000 Conclusion

Achievability proof sketch

Rate splitting: $R = R_0 + R_1$

Superposition coding:

Fix p(x). This induces p(z)p(x|z)Generate 2^{nR_0} cloud centers $\sim p(z)$ Generate 2^{nR_1} satellite codewords $\sim p(x|z)$

Achievable rate re 00000000 Channels with no 000 Conclusion

Achievability proof sketch

Rate splitting: $R = R_0 + R_1$

Superposition coding:

Fix p(x). This induces p(z)p(x|z)Generate 2^{nR_0} cloud centers $\sim p(z)$ Generate 2^{nR_1} satellite codewords $\sim p(x|z)$

Analysis:

Side receiver distinguishes cloud centers, but not satellite codewords

Injective deterministic interference channel (El Gamal-Costa 1982)

Injective deterministic interference channel (El Gamal-Costa 1982)

• Optimal scheme: Han–Kobayashi with $U_1 = Z_1$, $U_2 = Z_2$

Injective deterministic interference channel (El Gamal-Costa 1982)

• Optimal scheme: Han–Kobayashi with $U_1 = Z_1$, $U_2 = Z_2$

 $-\,$ is rate-splitting and superposition coding

Injective deterministic interference channel (El Gamal-Costa 1982)

• Optimal scheme: Han–Kobayashi with $U_1 = Z_1$, $U_2 = Z_2$

- $-\,$ is rate-splitting and superposition coding
- coincides with disturbance-minimizing scheme
Achievable rate region

annels with noise O

Extension to two disturbance constraints

One disturbance constraint Optimal scheme

 \leftrightarrow

2-pair interference channel Han–Kobayashi scheme

Extension to two disturbance constraints

One disturbance constraint Optimal scheme

2-pair interference channel Han–Kobayashi scheme

Two disturbance constraints **3-pair interference channel** \rightarrow

 \leftrightarrow

Achievable rate region

hannels with noise 00 Conclusion

Two disturbance constraints

	Disturbance constraints		
000000000	00000000000		

Coding scheme

ference decoding 000000 Disturbance constraints

Achievable rate region 00000000 nannels with noise 00 Conclusior 00

Coding scheme

$\begin{array}{l} \text{Split rate } R=R_0+R_1+R_2+R_3\\ \text{Let } \tilde{R}_1\geq R_1 \text{ and } \tilde{R}_2\geq R_2 \end{array}$

B. Bandemer (UCSD)

28 / 43

B. Bandemer (UCSD)

Introduction 000000000 erference decoding 0000000 Disturbance constraints

Achievable rate region

annels with noise

Conclusioi

Coding scheme

 $\begin{array}{l} \text{Split rate } R=R_0+R_1+R_2+R_3\\ \text{Let } \tilde{R}_1\geq R_1 \text{ and } \tilde{R}_2\geq R_2 \end{array}$

Achievable rate regio

Conclusion

Summary – Two disturbance constraints

Use Marton coding and superposition coding

Achievable rate regio

Channels with 000 Conclusior 00

Summary – Transmitter-centric aspect

Disturbance-constrained communication

- Link to interference channels (single constraint case recovers Han-Kobayashi)
- Two constraints: Layered coding scheme

Putting the pieces together — 3-DIC

BC aspect

MAC aspect

Putting the pieces together — 3-DIC

BC aspect

Marton coding and superposition coding

+

Interference decoding

Putting the pieces together — 3-DIC

Codebooks as in disturbance-constrained communication
 Fixed distributions p(uk, xk) for all users k

Introduction Interference decoding Disturbance constraints Achievable rate region Channels v

nels with noise C

Putting the pieces together — 3-DIC

Codebooks as in disturbance-constrained communication Fixed distributions p(uk, xk) for all users k

Introduction Interference decoding Disturbance constraints Achievable rate region Channels w

nnels with noise C

Putting the pieces together — 3-DIC

Codebooks as in disturbance-constrained communication
 Fixed distributions p(uk, xk) for all users k

Receivers use interference decoding
 Use full knowledge of interfering codebooks
 Non-unique simultaneous decoding

B. Bandemer (UCSD)

Theorem

$$\mathscr{R} = \operatorname{FM}\left\{\overline{\bigcup_{p} \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p)}\right\},$$

where p is of the form $p = p(q)p(u_1, x_1|q)p(u_2, x_2|q)p(u_3, x_3|q)$, is an inner bound to the capacity region of the 3-DIC.

Where

- FM is a specialized Fourier–Motzkin elimination
- \mathscr{R}_1 , \mathscr{R}_2 , and \mathscr{R}_3 are rate regions in \mathbb{R}^{18}

Theorem

$$\mathscr{R} = \operatorname{FM}\left\{\overline{\bigcup_{p} \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p)}\right\},$$

where p is of the form $p = p(q)p(u_1, x_1|q)p(u_2, x_2|q)p(u_3, x_3|q)$, is an inner bound to the capacity region of the 3-DIC.

Where

- FM is a specialized Fourier–Motzkin elimination
- \mathscr{R}_1 , \mathscr{R}_2 , and \mathscr{R}_3 are rate regions in \mathbb{R}^{18}

Theorem

$$\mathscr{R} = \operatorname{FM}\left\{\overline{\bigcup_{p} \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p)}\right\},$$

where p is of the form $p = p(q)p(u_1, x_1|q)p(u_2, x_2|q)p(u_3, x_3|q)$, is an inner bound to the capacity region of the 3-DIC.

Where

- FM is a specialized Fourier–Motzkin elimination
- \$\mathcal{R}_1\$, \$\mathcal{R}_2\$, and \$\mathcal{R}_3\$ are rate regions in \$\mathbb{R}^{18}\$
 Details are quite involved ...
 But easy to evaluate by computer

Theorem

$$\mathscr{R} = \operatorname{FM}\left\{\overline{\bigcup_{p} \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p)}\right\},$$

where p is of the form $p = p(q)p(u_1, x_1|q)p(u_2, x_2|q)p(u_3, x_3|q)$, is an inner bound to the capacity region of the 3-DIC.

Theorem

$$\mathscr{R} = \operatorname{FM}\left\{\overline{\bigcup_{p} \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p)}\right\},$$

where p is of the form $p = p(q)p(u_1, x_1|q)p(u_2, x_2|q)p(u_3, x_3|q)$, is an inner bound to the capacity region of the 3-DIC.

- Regions *R_k* are not convex (due to min terms)
- FM (Fourier–Motzkin) cannot be evaluated symbolically

Theorem

$$\mathscr{R} = \operatorname{FM}\left\{\overline{\bigcup_{p} \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p)}\right\},$$

where p is of the form $p = p(q)p(u_1, x_1|q)p(u_2, x_2|q)p(u_3, x_3|q)$, is an inner bound to the capacity region of the 3-DIC.

- Regions *R_k* are not convex (due to min terms)
- FM (Fourier–Motzkin) cannot be evaluated symbolically
 - $-\,$ But: easy to evaluate numerically

Theorem

$$\mathscr{R} = \operatorname{FM}\left\{\overline{\bigcup_{p} \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p)}\right\},$$

where p is of the form $p = p(q)p(u_1, x_1|q)p(u_2, x_2|q)p(u_3, x_3|q)$, is an inner bound to the capacity region of the 3-DIC.

- Strictly contains interference-decoding inner bound
 - $-\,$ Interference as noise < Interference decoding < This inner bound

Theorem

$$\mathscr{R} = \operatorname{FM}\left\{\overline{\bigcup_{p} \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p)}\right\},$$

where p is of the form $p = p(q)p(u_1, x_1|q)p(u_2, x_2|q)p(u_3, x_3|q)$, is an inner bound to the capacity region of the 3-DIC.

- Strictly contains interference-decoding inner bound
 - $-\,$ Interference as noise < Interference decoding < This inner bound
- Achieves 2-pair marginal capacities
 - $-\,$ Subsumes Han-Kobayashi scheme for every 2-pair subchannel

Introduction Interference decoding Disturbance constraints .

Example

Achievable rate region 00000000

Channels with no 000 Conclusion

Example: Rate regions

Interference as noise

Interference decoding

Layered scheme & Interference Decoding

Achievable rate region 00000000

Channels with nois

Conclusion 00

Example: Rate regions

Interference as noise

Interference decoding

Layered scheme & Interference Decoding

Example: Rate regions

Conclusior 00

Summary – Achievable rate region for 3-DIC

- New inner bound to the capacity region
 - Non-symbolic Fourier-Motzkin elimination
 - Numerous modes of saturation

Extension to channels with noise (to be presented at ISIT 2012)

Extension to channels with noise (to be presented at ISIT 2012)

- Combined interference S_k passes through a noisy channel S_k → S'_k
 Arbitrary DMC $p(s'_k|s_k)$
- h_k and f_k remain injective in each argument
Extension to channels with noise (to be presented at ISIT 2012)

This channel:

Has structure similar to 3-DIC

Contains the Gaussian IC as a special case

Inner bound for channels with noise

Theorem

$$\mathscr{R} = \operatorname{FM}\left\{\overline{\bigcup_{p} \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p)}\right\},$$

where p is of the form $p = p(q)p(u_1, x_1|q)p(u_2, x_2|q)p(u_3, x_3|q)$, is an inner bound to the capacity region of the 3-DIC.

As before,

- FM is a specialized Fourier–Motzkin elimination
- \mathscr{R}_1 , \mathscr{R}_2 , and \mathscr{R}_3 are rate regions in \mathbb{R}^{18}

Inner bound for channels with noise

Theorem

$$\mathscr{R} = \operatorname{FM}\left\{\overline{\bigcup_{p} \mathscr{R}_{1}(p) \cap \mathscr{R}_{2}(p) \cap \mathscr{R}_{3}(p)}\right\},$$

where p is of the form $p = p(q)p(u_1, x_1|q)p(u_2, x_2|q)p(u_3, x_3|q)$, is an inner bound to the capacity region of the 3-DIC.

As before,

FM is a specialized Fourier–Motzkin elimination

\$\mathcal{R}_1\$, \$\mathcal{R}_2\$, and \$\mathcal{R}_3\$ are rate regions in \$\mathbb{R}^{18}\$
Details are still quite involved ...
But still easy to evaluate by computer

Summary – Channels with noise

- Inner bound techniques continue to work
- Achievable regimes subsumes Han–Kobayashi scheme

Conclusion

- ► Receiver-centric aspect
 - Interference decoding: Exploit structure of combined interference
 - Simultaneous non-unique decoding is optimal
 - Subsumes treating interference as noise

Conclusion

- Receiver-centric aspect
 - Interference decoding: Exploit structure of combined interference
 - Simultaneous non-unique decoding is optimal
 - Subsumes treating interference as noise
- Transmitter-centric aspect
 - Introduced communication with disturbance constraints
 - Found rate-disturbance region for single constraint
 - Connection to interference channels
 - Inner bound for deterministic case with two constraints

Conclusion

- ► Receiver-centric aspect
 - Interference decoding: Exploit structure of combined interference
 - Simultaneous non-unique decoding is optimal
 - Subsumes treating interference as noise
- Transmitter-centric aspect
 - Introduced communication with disturbance constraints
 - Found rate-disturbance region for single constraint
 - Connection to interference channels
 - Inner bound for deterministic case with two constraints
- Combination of the two aspects
 - New capacity inner bound for 3-DIC: improves previous bounds
 - Transmission scheme extends to noisy channels

		Conclusion
		00

Thanks!

Inner bound on the rate-disturbance region

Theorem

$$\begin{array}{l} \textit{The set of } (R,R_{d,1},R_{d,2}) \in \mathbb{R}^3_+ \textit{ satisfying} \\ R \leq H(Y) \\ R_{d,1} + R_{d,2} \geq I(Z_1;Z_2 \mid U) \\ R - R_{d,1} \leq H(Y \mid Z_1,U) \\ R - R_{d,2} \leq H(Y \mid Z_2,U) \\ R - R_{d,1} - R_{d,2} \leq H(Y \mid Z_1,Z_2,U) \\ & - I(Z_1;Z_2 \mid U) \\ 2R - R_{d,1} - R_{d,2} \leq H(Y \mid Z_1,Z_2,U) + H(Y \mid U) \\ & - I(Z_1;Z_2 \mid U) \\ \textit{for some joint distribution } p(u,x), \textit{ is an inner bound to the rate-disturbance region} \end{array}$$

(This is optimal in some cases, e.g., if Y = X)

Coding scheme

Split rate $R = R_0 + R_1 + R_2 + R_3$ Let $\tilde{R}_1 \geq R_1$ and $\tilde{R}_2 \geq R_2$ \tilde{R}_1, R_1 $R_0 \quad u^n < z_2^n \xrightarrow{z_1^n} x^n \quad R_3$

 $ilde{R}_2, R_2$

Decoding conditions:

$$\begin{aligned} R_3 &< H(Y \mid Z_1, Z_2, U) \\ \tilde{R}_1 + R_3 &< H(Y \mid Z_2, U) + I(Z_1; Z_2 \mid U) \\ \tilde{R}_2 + R_3 &< H(Y \mid Z_1, U) + I(Z_1; Z_2 \mid U) \\ \tilde{R}_1 + \tilde{R}_2 + R_3 &< H(Y \mid U) + I(Z_1; Z_2 \mid U) \\ R_0 + \tilde{R}_1 + \tilde{R}_2 + R_3 &< H(Y) + I(Z_1; Z_2 \mid U) \end{aligned}$$

(plus some encoding conditions)

3-DIC inner bound — Conditions for \mathscr{R}_1 (first receiver) **Conditions:** Encoder conditions, and $r_1 + \min\{r_{21} + r_{31}, H(S_1 | c_{21}, c_{31})\} < H(Y_1 | c_1, c_{21}, c_{31}) + t_1$

3-DIC inner bound — Conditions for \mathscr{R}_1 (first receiver)

Conditions: Encoder conditions, and

 $r_1 + \min\{r_{21} + r_{31}, H(S_1 \mid c_{21}, c_{31})\} < H(Y_1 \mid c_1, c_{21}, c_{31}) + t_1$

From disturbance-constrained communication

<i>r</i> 1	<i>C</i> 1	t_1	ñ p
R ₁₁	U_1, X_{12}, X_{13}	0	K_{12}, K_{12}
$ ilde{ extsf{R}}_{12}+ extsf{R}_{11}$	U_{1}, X_{13}	$I(X_{12}; X_{13} U_1)$	x_{12}^n
$ ilde{R}_{13}+R_{11}$	U_{1}, X_{12}	$I(X_{12}; X_{13} U_1)$	$R_{10} u_1^n \langle \rangle \rightarrow x_1^n R_{11}$
$ ilde{R}_{12}+ ilde{R}_{13}+R_{11}$	U_1	$I(X_{12}; X_{13} U_1)$	x_{13}^{n}
$R_{10} + ilde{R}_{12} + ilde{R}_{13} + R_{11}$	Ø	$I(X_{12}; X_{13} U_1)$	\tilde{R}_{12} R_{12}

3-DIC inner bound — Conditions for \mathscr{R}_1 (first receiver)

Conditions: Encoder conditions, and

 $r_1 + \min\{r_{21} + r_{31}, H(S_1 \mid c_{21}, c_{31})\} < H(Y_1 \mid c_1, c_{21}, c_{31}) + t_1$

From disturbance-constrained communication

<i>r</i> ₁	<i>C</i> 1	t_1	ñ n
R ₁₁	U_1, X_{12}, X_{13}	0	R_{12}, R_{12}
$ ilde{ extsf{R}}_{12} + extsf{R}_{11}$	U ₁ , X ₁₃	$I(X_{12}; X_{13} U_1)$	x_{12}^n
$ ilde{ extsf{R}}_{13} + extsf{R}_{11}$	U_{1}, X_{12}	$I(X_{12}; X_{13} U_1)$	$R_{10} u_1^n \langle \rangle \rightarrow x_1^n R_{11}$
$ ilde{R}_{12}+ ilde{R}_{13}+R_{11}$	U_1	$I(X_{12}; X_{13} U_1)$	x_{13}^{n}
$R_{10} + ilde{R}_{12} + ilde{R}_{13} + R_{11}$	Ø	$I(X_{12}; X_{13} U_1)$	\tilde{R}_{12}, R_{12}

From interference decoding

$$\begin{array}{ccc} r_{21} & c_{21} \\ 0 & X_{21} \\ \min\{\tilde{R}_{21}, H(X_{21} \mid U_2)\} & U_2 \\ \min\{R_{20} + \tilde{R}_{21}, \\ R_{20} + H(X_{21} \mid U_2), H(X_{21})\} & \emptyset \end{array}$$

 R_{20} $u_2^n \longrightarrow x_{21}^n \tilde{R}_{21}$

3-DIC inner bound — Conditions for \mathscr{R}_1 (first receiver)

Conditions: Encoder conditions, and

 $r_1 + \min\{r_{21} + r_{31}, H(S_1 \mid c_{21}, c_{31})\} < H(Y_1 \mid c_1, c_{21}, c_{31}) + t_1$

From disturbance-constrained communication

<i>r</i> ₁	<i>C</i> 1	t_1	ñ p
R ₁₁	U_1, X_{12}, X_{13}	0	K_{12}, K_{12}
$ ilde{ extsf{R}}_{12} + extsf{R}_{11}$	U ₁ , X ₁₃	$I(X_{12}; X_{13} U_1)$	x_{12}^n
$ ilde{ extsf{R}}_{13} + extsf{R}_{11}$	U_{1}, X_{12}	$I(X_{12}; X_{13} U_1)$	$R_{10} u_1^n \langle \rangle \rightarrow x_1^n R_{11}$
$ ilde{R}_{12}+ ilde{R}_{13}+R_{11}$	U_1	$I(X_{12}; X_{13} U_1)$	x_{13}^{n}
$R_{10} + ilde{R}_{12} + ilde{R}_{13} + R_{11}$	Ø	$I(X_{12}; X_{13} U_1)$	\tilde{R}_{12}, R_{12}

From interference decoding

<i>r</i> ₂₁	C21		<i>r</i> ₃₁	C 31
0	X ₂₁		0	<i>X</i> ₃₁
$\min\{ ilde{R}_{21}, H(X_{21} \mid U_2)\}$	U_2	r	$\min\{\tilde{R}_{31}, H(X_{31} U_3)\}$	U_3
$\min\{R_{20}+\tilde{R}_{21},$		$\min\{R_{30} +$	\tilde{R}_{31} ,	
$R_{20} + H(X_{21} U_2), H(X_{21})\}$	Ø	$R_{30} +$	$H(X_{31} U_3), H(X_{31})\}$	Ø
R_{20} $u_2^n \longrightarrow x_{21}^n \tilde{R}_{21}$			R_{30} $u_3^n \longrightarrow x_{31}^n$	\tilde{R}_{31}
B Bandemer (LICSD)	3 pair interferenc	e channels		16 / /

3-DIC inner bound — Conditions for \mathscr{R}_1 (first receiver) Conditions: Encoder conditions, and $r_1 + \min\{r_{21} + r_{31}, H(S_1 | c_{21}, c_{31})\} < H(Y_1 | c_1, c_{21}, c_{31}) + t_1$

From disturbance-constrained communication

<i>r</i> 1	<i>C</i> 1	t_1	\tilde{D} D
R ₁₁	U_1, X_{12}, X_{13}	0	κ_{12},κ_{12}
$ ilde{R}_{12}+R_{11}$	U ₁ , X ₁₃	$I(X_{12}; X_{13} U_1)$	x_{12}^{n}
$ ilde{R}_{13}+R_{11}$	U_{1}, X_{12}	$I(X_{12}; X_{13} U_1)$	$R_{10} u_1^n \langle \rangle \rightarrow x_1^n R_{11}$
$ ilde{ extsf{R}}_{12}+ ilde{ extsf{R}}_{13}+ extsf{R}_{11}$	U_1	$I(X_{12}; X_{13} U_1)$	x_{13}^{i}
$R_{10} + ilde{R}_{12} + ilde{R}_{13} + R_{11}$	Ø	$I(X_{12}; X_{13} U_1)$	\tilde{R}_{12}, R_{12}

From interference decoding

	<i>r</i> ₂₁	C 21		r ₃₁	C31
	0	X_{21}		0	X ₃₁
$\min\{\tilde{R}_{21}, H(X_{21} \mid 0$	U ₂)}	U_2	n	$\min\{\tilde{R}_{31}, H(X_{31} U_3)\}$	U ₃
$\min\{R_{20}+\tilde{R}_{21},$			$\min\{R_{30} + $	$\tilde{R}_{31},$	
$R_{20} + H(X_{21} U_2), H(X_{21} U_2))$	(₂₁)}	Ø	$R_{30} +$	$H(X_{31} U_3), H(X_{31})\}$	Ø
R_{20} $u_2^n \longrightarrow x_{21}^n \tilde{R}_2$	1			R_{30} $u_3^n \longrightarrow x_{31}^n$	\tilde{R}_{31}
B. Bandemer (UCSD)	3-	pair interferend	ce channels		46 / 43

3-DIC inner bound — Conditions for \mathscr{R}_1 (first receiver) Condition (example):

$$\begin{split} \tilde{R}_{13} + R_{11} + \min \big\{ R_{20} + \tilde{R}_{21} + \tilde{R}_{31}, \\ R_{20} + \tilde{R}_{21} + H(X_{31} \mid U_3, Q), \\ R_{20} + \tilde{R}_{31} + H(X_{21} \mid U_2, Q), \\ R_{20} + H(X_{21} \mid U_2, Q) + H(X_{31} \mid U_3, Q), \\ \tilde{R}_{31} + H(X_{21} \mid Q), \\ H(S_1 \mid U_3, Q) \big\} &\leq H(Y_1 \mid U_1, X_{12}, U_3, Q) \\ &+ I(X_{12}; X_{13} \mid U_1, Q) \end{split}$$

3-DIC inner bound — Conditions for \mathscr{R}_1 (first receiver) Condition (example):

$$\begin{split} \tilde{R}_{13} + R_{11} + \min \big\{ R_{20} + \tilde{R}_{21} + \tilde{R}_{31}, \\ R_{20} + \tilde{R}_{21} + H(X_{31} \mid U_3, Q), \\ R_{20} + \tilde{R}_{31} + H(X_{21} \mid U_2, Q), \\ R_{20} + H(X_{21} \mid U_2, Q) + H(X_{31} \mid U_3, Q), \\ \tilde{R}_{31} + H(X_{21} \mid Q), \\ H(S_1 \mid U_3, Q) \big\} &\leq H(Y_1 \mid U_1, X_{12}, U_3, Q) \\ &+ I(X_{12}; X_{13} \mid U_1, Q) \end{split}$$

45 conditions of this type, plus 5 encoder conditions

Not hard to evaluate by computer

B. Bandemer (UCSD)

Example conditions for \mathscr{R}_1 (first receiver)

$$\begin{split} \tilde{R}_{13} + R_{11} + \min \big\{ R_{20} + \tilde{R}_{21} + \tilde{R}_{31}, \\ R_{20} + \tilde{R}_{21} + I(S_1; S_1' \mid X_2, U_3, Q), \\ R_{20} + \tilde{R}_{31} + I(S_1; S_1' \mid U_2, X_3, Q), \\ R_{20} + I(S_1; S_1' \mid U_2, U_3, Q), \\ \tilde{R}_{31} + I(S_1; S_1' \mid X_3, Q), \\ I(S_1; S_1' \mid U_3, Q) \big\} &\leq I(X_1, X_2, X_3; Y_1 \mid U_1, X_{12}, U_3, Q) \\ &+ I(X_{12}; X_{13} \mid U_1, Q) \end{split}$$

- Saturation interpretation still holds
- Conditional noisy channel capacities replace typical set size

Example conditions for \mathscr{R}_1 (first receiver)

$$\begin{split} \tilde{R}_{13} + R_{11} + \min \left\{ R_{20} + \tilde{R}_{21} + \tilde{R}_{31}, \\ R_{20} + \tilde{R}_{21} + H(X_{31} \mid U_3, Q), \\ R_{20} + \tilde{R}_{31} + H(X_{21} \mid U_2, Q), \\ R_{20} + H(X_{21} \mid U_2, Q) + H(X_{31} \mid U_3, Q), \\ \tilde{R}_{31} + H(X_{21} \mid Q), \\ H(S_1 \mid U_3, Q) \right\} &\leq H(Y_1 \mid U_1, X_{12}, U_3, Q) \\ &+ I(X_{12}; X_{13} \mid U_1, Q) \end{split}$$

- Saturation interpretation still holds
- Conditional noisy channel capacities replace typical set size